Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38637314

RESUMEN

Biocrusts, common in natural ecosystems, are specific assemblages of microorganisms at or on the soil surface with associated microorganisms extending into the top centimeter of soil. Agroecosystem biocrusts have similar rates of nitrogen (N) fixation as those in natural ecosystems, but it is unclear how agricultural management influences their composition and function. This study examined the total bacterial and diazotrophic communities of biocrusts in a citrus orchard and a vineyard that shared a similar climate and soil type but differed in management. To contrast climate and soil type, these biocrusts were also compared with those from an apple orchard. Unlike natural ecosystem biocrusts, these agroecosystem biocrusts were dominated by proteobacteria and had a lower abundance of cyanobacteria. All of the examined agroecosystem biocrust diazotroph communities were dominated by N-fixing cyanobacteria from the Nostocales order, similar to natural ecosystem cyanobacterial biocrusts. Lower irrigation and fertilizer in the vineyard compared with the citrus orchard could have contributed to biocrust microbial composition, whereas soil type and climate could have differentiated the apple orchard biocrust. Season did not influence the bacterial and diazotrophic community composition of any of these agroecosystem biocrusts. Overall, agricultural management and climatic and edaphic factors potentially influenced the community composition and function of these biocrusts.


Asunto(s)
Productos Agrícolas , Malus , Fijación del Nitrógeno , Microbiología del Suelo , Malus/microbiología , Productos Agrícolas/microbiología , Productos Agrícolas/crecimiento & desarrollo , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/metabolismo , Citrus/microbiología , Ecosistema , Cianobacterias/genética , Cianobacterias/clasificación , Cianobacterias/crecimiento & desarrollo , Suelo/química , Agricultura , Nitrógeno/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Proteobacteria/genética , Estaciones del Año
2.
Front Microbiol ; 13: 892266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992712

RESUMEN

Biocrusts are communities of microorganisms within the top centimeter of soil, often dominated by phototrophic dinitrogen-fixing (N2-fixing) organisms. They are common globally in arid ecosystems and have recently been identified in agroecosystems. However, unlike natural ecosystem biocrusts, agroecosystem biocrusts receive regular fertilizer and irrigation inputs. These inputs could influence seasonal biocrust N2-fixation and their relationship with soil nutrients in perennial agroecosystems, which is of particular interest given crop management requirements. In this study, biocrust and adjacent bare soil N2-fixation activity was measured in the field during the summer, fall, spring, and winter seasons in a Florida citrus orchard and vineyard using both acetylene reduction assays and 15N2 incubations. Samples were analyzed for microbial and extractable carbon (MBC, EC), nitrogen (MBN, EN), and phosphorus (MBP, EP). In both agroecosystems, biocrusts had greater microbial biomass and extractable nutrients compared to bare soil. The citrus and grape biocrusts were both actively fixing N2, despite crop fertilization, with rates similar to those found in natural arid and mesic systems, from 0.1 to 142 nmol of C2H4 g-1 of biocrust dry weight h-1 (equivalent to 1-401 µmol m-2h-1). Lower soil temperatures and higher EC:EN ratios were associated with higher N2-fixation rates in citrus biocrusts, while higher soil moisture and higher EP were associated with higher N2-fixation rates in grape biocrusts. The N2-fixation activity of these agroecosystem biocrusts indicates the possibility of biocrusts to enhance N cycling in perennial agroecosystems, with potential benefits for crop production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...